

1

Navigating the Minefield: Successful
Software Estimation before
Requirements are Complete

PRESENTED BY
CAROL A. DEKKERS
CAROLDEKKERS@GMAIL.COM
DANIEL B. F RENCH
DFRENCH@COBEC.COM

2Agenda

 Software Project Cost Estimating
 Project requirements - Demystified
 Estimates before Requirements
 DYB and gu(estimate)
 Q & A

3Project estimating
Scope &
Quality

Effort

Cost

Schedule

4

5Project goals  Faster +
Better + Cheaper…

delivered on-time &
on-budget !

6Typical estimating challenges

INPUTS (KNOWN +
ASSUMPTIONS)

ESTIMATING
MODEL(S)

ESTIMATES
(COST, EFFORT,
DURATION, …)

Accurate Complete

Applic-
able Available

What is
(in / out)
of scope

Consistent

Presenter
Presentation Notes
Accuracy: (accurate inputs to estimation)
Availability: of required cost factors (inputs)
Applicability: of historical data
Completeness: of requirements (s/w, h/w, other)
Risk: calculated and predictive
What: is included / excluded
 (e.g.; what/whose time is included)

 7“Dog chasing its tail”
Cycle

Poor
requirements

Poor
estimates

Poor change
management

$ and
schedule
overruns

Presenter
Presentation Notes
Poor and incomplete requirements leads to poor estimates (usually underestimates), which then results in poor change management because no one knows what are changes in-or-out of the original estimate. This cycle of not-knowing leads to cost and schedule overruns as rework escalates and the original estimate was based on a bad foundation of data.

Software
requirements

8

9Three distinct types of software
requirements

1. Functional
requirements

2. Non-functional
requirements

3. Technical (build)
requirements

“Project”
requirements

Presenter
Presentation Notes
Go over examples of functional user requirements and non-functional user requirements. Together they are the user requirements.

State the importance of documenting both – use analogy of a building – where the owner expresses the need for a room for cooking meals and the builder says they know exactly what is needed. In the final delivery, the cafeteria kitchen visualized by the owner does not equal the gourmet kitchen delivered by the builder

Other non-development requirements can also influence projects – e.g.. Hardware debugging is NOT development. BUT – the hardware debugging is often done in parallel with development (functional + non-functional req’s)

 How customers view
requirements – non-transparent

10

Project
requirements

Functional

Technical

Non-functional

Presenter
Presentation Notes
Go over examples of functional user requirements and non-functional user requirements. Together they are the user requirements.

State the importance of documenting both – use analogy of a building – where the owner expresses the need for a room for cooking meals and the builder says they know exactly what is needed. In the final delivery, the cafeteria kitchen visualized by the owner does not equal the gourmet kitchen delivered by the builder

Other non-development requirements can also influence projects – e.g.. Hardware debugging is NOT development. BUT – the hardware debugging is often done in parallel with development (functional + non-functional req’s)

 11How developers views
requirements – blended

Project
requirements

Functional

Technical

Non-functional

1. Functional requirements 12

WHAT software shall do
 Documented with use cases or user stories

• Responsibility of customers/users to define

• Objective, documented

• Can be quantified (and estimated)
 Functional size of software (function points: FP)
 Key input to estimating

• “Floor plan for software”

Presenter
Presentation Notes
Functional user requirements are WHATs and include:
business functions (procedures with steps such as create deposit)
Results (outcomes such as ensure all channel changes are recorded)
Analysis of data (provide the capability to query based on daypart, network, etc)
Storage of data (record and keep sales figures)

Multiple applications can be included in a project – requirements can include enhancement and development

2. Non-functional requirements 13

HOW software shall perform: Suitability, Accuracy,
Efficiency, Interoperability, Compliance, Security, Reliability,

Maintainability, Portability, Quality and “ilities”

• Responsibility of customers/users to define

• Documented with supplementary specs or user stories

• Can be quantified:

 SNAP points, VAF, COCOMO II effort multipliers
 Can DOUBLE an estimate

• “International code for construction”

Presenter
Presentation Notes
Non-functional requirements are especially important to engineering and embedded software systems because they are often NOT SPECIFIED until it is too late.
Can have a MAJOR impact on choice of hardware, software, design and solution

How team will

develop or build the software

3. Technical requirements 14

• May be influenced by Functional and Non-functional
requirements plus environment

• Tools, methods, skills, programming language, etc.

• IT responsibility

• “Blueprints for software”

• NOT part of Use Cases, not part of FP,
but….directly a part of estimate

Presenter
Presentation Notes
Non-functional requirements are especially important to engineering and embedded software systems because they are often NOT SPECIFIED until it is too late.
Can have a MAJOR impact on choice of hardware, software, design and solution

Segue: Agile User Stories 15

 Collection of high level software requirements:
 Functional user stories (functions);

 Non-functional (how, quality, usability, performance, etc.);

 May include technical user stories;

 May include other requirements (such as research spikes or bugs)

 May be inter-related and overlapping
 Details emerge during sprints
 Agile is part of technical requirement (How to build software)

Estimating techniques 16

Technical

Functional

Non-
functional • Analogy

• Parametric
• Expert opinion
• Extrapolation from actuals
• Engineering build-up

• Non-trivial
• History is repeatable

Estimates (cost, effort,
schedule)

Project estimating
Known Knowns

Known Unknowns

17

Unknown Unknowns

Good estimates build on knowns

Presenter
Presentation Notes
Per Rubin on Y2K in August 1998 ITMetrics Strategies:
Known knowns: Things we know must be addressed. Existing functionality must operate (enhancements) and new must work.

Known unknowns- know that there are risks to be managed, prepared to face these. Often history is good predictor.

Unknown unknowns - Issues are not anticipated, but may arise. Change management process critical. Rework spirals

By maximizing knowns -- less chance of budget overruns. Better chance of having enough time to properly test.
Realistic estimates help, change management procedures help.

Predictive modeling 18

Presenter
Presentation Notes
Based on historical models, accurate inputs, known knowns + known unknowns

Examples of estimating
formulas

Metric Units Formula
Project Cost Ratio

(completed projects)
$ / FP

(or
SLOC)

(Total Hours * Hourly Cost) + Other Costs
Project Functional Size

Support Cost Ratio $ /
1000 FP

(Support Hours * Hourly Cost) + Other Costs
Application Functional Size

(or FTE /
app)

Repair Cost Ratio $ / FP
(or per

fix)

(Repair hours * Hourly Cost)
Functional Size of Repair

Presenter
Presentation Notes
Project hours-work effort
Hourly cost-Charge back rate (usually determined by the Finance department)
Other expenses-one time costs associated with this project
Support hours-total hours for period-includes Repairs, Conversions (technical); User Support; and Preventive Maintenance (RCUP)

20

Today, estimating with good requirements
and a solid model is similar to having a
mapped minefield…

Estimating before
requirements

21

22

Can you estimate
an idea?

23I have an idea… can you give
me a quick estimate?

I won’t hold you to it…
“ballpark” cost…
Kind-of-like xxx...
I need some #’s…

today

“Right now it’s just an idea…”

24

Presenter
Presentation Notes
Per Rubin on Y2K in August 1998 ITMetrics Strategies:
Known knowns: Things we know must be addressed. Existing functionality must operate (enhancements) and new must work.

Known unknowns- know that there are risks to be managed, prepared to face these. Often history is good predictor.

Unknown unknowns - Issues are not anticipated, but may arise. Change management process critical. Rework spirals

By maximizing knowns -- less chance of budget overruns. Better chance of having enough time to properly test.
Realistic estimates help, change management procedures help.

The Project Process Model 25

Quality

Input Process Output

Project Measures

Expressed
Expected
Elusive
Exciting

Delivery Rate
Defect Detection Ratio
Duration Delivery Rate

Cost per Unit of Measure

Attributes
•People
•Environment
•Tools
•Techniques

Time
Cost

Product Size
Scrap

Define Design Construct Test Install Maintain

An idea happens way
before solid data is

available

Resources

Presenter
Presentation Notes
1) Review Project Process Model
2) Cost per Unit of Measure (Function Point or SLOC) determines project cost
 (Project FP * Cost per FP = Project Cost)

Ideas

26

When faced with a napkin,
what can you do?

 Refuse to play
 Memory game (“Kinda-sorta”)
 Mutter (“professional ethics”) and leave
 SWAG ($1 million & 6 months)
 Promise (and disappear)

Or…

27

Presenter
Presentation Notes
Refuse to do an estimate  too early
Memory game (“Kinda-Sorta”)
Cite “professional” ethics and escape
SWAG based on napkin scrawls ($1 million dollars & 6 months)
Promise (and delay) repeatedly until requirements are at least partially done

ANY number  project budget (with your name)

 DYB (do your best)

and (gu)estimate

28

Presenter
Presentation Notes
Do your best (DYB), document and guesstimate
ANY number  estimate  wrong $  fallout�but… know that documented assumptions plus size estimates are a way forward!

DYB and (gu)estimate
29

1. Document base assumptions:
• Functional size
• Non-functional
• Technical
• Historical growth %

2. Document assumptions & do at
least two estimates:
• ROM based on analogy, or

expert opinion

3. Save the napkin

Presenter
Presentation Notes
Functional size
Historical % for rework, scope creep, rules of thumb

1. Document base assumptions/230

Functional size: (example shortcuts)
• One File Model (# entities * 31 FP each)

• Simple Function Points

• T-shirt sizing (XS - 3X)

• ISBSG (International Software Benchmarking Standards
Group) function point profiles

• Patterns (sizing by analogy)

Presenter
Presentation Notes
One File Function Point Model (# entities * 31 FP each)  each entity = avg. AUDIO (Add, Update, Delete, Inquiry, Output) 10 FP (file)+12 FP (A,U,D * 4 FP each) + 4 FP (query) + 5 FP (output) = 31 FP
Functional user requirements are WHATs and include:
business functions (procedures with steps such as create deposit)
Results (outcomes such as ensure all channel changes are recorded)
Analysis of data (provide the capability to query based on daypart, network, etc)
Storage of data (record and keep sales figures)

Multiple applications can be included in a project – requirements can include enhancement and development

 1. Document base assumptions/331

Non-functional size: (“ilities”)
• Document assumptions: standard constraints

(e.g., performance, security, special needs)

• Consider adjustment factor or software non-
functional assessment (SNAP)

• Overestimate the complexity (seldom less
complex) & compare history

Presenter
Presentation Notes
Non-functional requirements are especially important to engineering and embedded software systems because they are often NOT SPECIFIED until it is too late.
Can have a MAJOR impact on choice of hardware, software, design and solution

 1. Document base assumptions/432

Technical requirements:

• standard development tool suite for subject
area

• tools used on similar systems

• consider “uniqueness” potential
(architecture, method, novel subject matter,
special skills sets, etc)

 1. Document base assumptions 33

Adjust for uncertainty based on historical %:

• Size growth average 1.5- 2%* per month
(18-month project  +30% FP)

• Rework 40%  can double expert opinion

• Risk management  document areas of
greatest uncertainty

* Capers Jones, Estimating Software Costs: Bringing
realism to estimating 2nd edition

 342. Rough order of magnitude
(ROM) equations

 Range of “(gu)estimates”  NO decimals!

 Rules of thumb, high level size

 Supplement with expert opinion (adjusted
for uncertainty)

 Label results as “preliminary”

 Save copies of modeling exercises

Presenter
Presentation Notes
Cost estimators are not wizards who can estimate things that are not yet known

3. Save the napkin

 Despite best intent  estimators cannot
predict future based on ideas

 (Gu)estimates based on documented
assumptions are a step forward

35

 If (gu)estimate becomes project
budget /schedule  scan the napkin
for Kick-off meeting

Project ABC
Budget $500 K
Preliminary
requirements

Presenter
Presentation Notes
Cost estimators are not wizards who can estimate things that are not yet known

36

Presenter
Presentation Notes
Estimate is only as good as its LEAST accurate input… garbage in  Garbage out

37Now you can carefully…
navigate the minefield

Cost

Effort

Scope &
Quality

Schedule

38

QUESTIONS?

… THANK YOU

39

Navigating the Minefield: Successful
Software Estimation before

Requirements are Complete

PRESENTED BY
CAROL A. DEKKERS
EMAIL: CAROLDEKKERS@GMAIL.COM
DANIEL B. F RENCH
EMAIL: DFRENCH@COBEC.COM

mailto:CAROLDekkers@qualityplustech.com
mailto:DFRENCH@COBEC.COM

	Navigating the Minefield: Successful Software Estimation before Requirements are Complete
	Agenda
	Project estimating
	Slide Number 4
	Project goals  Faster + Better + Cheaper…�
	Typical estimating challenges
	“Dog chasing its tail”�Cycle
	Software requirements
	Three distinct types of software requirements
	How customers view requirements – non-transparent
	How developers views requirements – blended
	Functional requirements
	2. Non-functional requirements
	3. Technical requirements
	Segue: Agile User Stories
	Estimating techniques
	Project estimating
	Predictive modeling
	Examples of estimating�formulas
	Slide Number 20
	Estimating before requirements
	Can you estimate an idea?
	I have an idea… can you give me a quick estimate?
	�
	The Project Process Model
	Slide Number 26
	When faced with a napkin, �what can you do?
	DYB (do your best) �and (gu)estimate
	DYB and (gu)estimate
	1. Document base assumptions/2
	1. Document base assumptions/3
	
	
	2. Rough order of magnitude (ROM) equations
	3. Save the napkin�
	Slide Number 36
	Now you can carefully… navigate the minefield
	QUESTIONS?����… THANK YOU��
	Navigating the Minefield: Successful Software Estimation before Requirements are Complete

Accessibility Report

		Filename:

		Navigating the Minefield Estimates Before Requirements_Dekkers_French.pdf

		Report created by:

		Amber Powell

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

